skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vinodchandran, N_V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)
    We investigate replicable learning algorithms. Informally a learning algorithm is replicable if the algorithm outputs the same canonical hypothesis over multiple runs with high probability, even when different runs observe a different set of samples from the unknown data distribution. In general, such a strong notion of replicability is not achievable. Thus we consider two feasible notions of replicability called {\em list replicability} and {\em certificate replicability}. Intuitively, these notions capture the degree of (non) replicability. The goal is to design learning algorithms with optimal list and certificate complexities while minimizing the sample complexity. Our contributions are the following. 1. We first study the learning task of estimating the biases of $$d$$ coins, up to an additive error of $$\varepsilon$$, by observing samples. For this task, we design a $(d+1)$-list replicable algorithm. To complement this result, we establish that the list complexity is optimal, i.e there are no learning algorithms with a list size smaller than $d+1$ for this task. We also design learning algorithms with certificate complexity $$\tilde{O}(\log d)$$. The sample complexity of both these algorithms is $$\tilde{O}(\frac{d^2}{\varepsilon^2})$$ where $$\varepsilon$$ is the approximation error parameter (for a constant error probability). 2. In the PAC model, we show that any hypothesis class that is learnable with $$d$$-nonadaptive statistical queries can be learned via a $(d+1)$-list replicable algorithm and also via a $$\tilde{O}(\log d)$$-certificate replicable algorithm. The sample complexity of both these algorithms is $$\tilde{O}(\frac{d^2}{\nu^2})$$ where $$\nu$$ is the approximation error of the statistical query. We also show that for the concept class \dtep, the list complexity is exactly $d+1$ with respect to the uniform distribution. To establish our upper bound results we use rounding schemes induced by geometric partitions with certain properties. We use Sperner/KKM Lemma to establish the lower bound results. 
    more » « less
  2. Constraint satisfaction problems (CSPs) and data stream models are two powerful abstractions to capture a wide variety of problems arising in different domains of computer science. Developments in the two communities have mostly occurred independently and with little interaction between them. In this work, we seek to investigate whether bridging the seeming communication gap between the two communities may pave the way to richer fundamental insights. To this end, we focus on two foundational problems: model counting for CSPs and the computation of the number of distinct elements in a data stream, also known as the zeroth frequency moment (F0) of a data stream. Our investigations lead us to observe striking similarity in the core techniques employed in the algorithmic frameworks that have evolved separately for model counting and distinct elements computation. We design a recipe for the translation of algorithms developed for distinct elements estimation to that of model counting, resulting in new algorithms for model counting. We then observe that algorithms in the context of distributed streaming can be transformed into distributed algorithms for model counting. We next turn our attention to viewing streaming from the lens of counting and show that framing distinct elements estimation as a special case of #DNF counting allows us to obtain a general recipe for a rich class of streaming problems, which had been subjected to case-specific analysis in prior works. 
    more » « less